Find all primes $p$ such that $29p+1$ is a square.
Proof:\begin{equation} 29p+1=t^2\end{equation}So\begin{equation} 29p=(t+1)(t-1)\end{equation}Both 29 and $p$ are primes,so\begin{align*} \begin{cases} t+1=29\\t-1=p\\ \end{cases}\end{align*}(impossible)or\begin{align*} \begin{cases} t+1=p\\t-1=29\\ \end{cases}\end{align*}(p=31)or\begin{align*} \begin{cases} t+1=29p\\t-1=1\\ \end{cases}\end{align*}(impossible)or\begin{align*} \begin{cases} t-1=29p\\t+1=1\\ \end{cases}\end{align*}(impossible)So $p=31$.